
58

Statically Resolvable Ambiguity

VIKTOR PALMKVIST, KTH Royal Institute of Technology, Sweden

ELIAS CASTEGREN, Uppsala University, Sweden
PHILIPP HALLER, KTH Royal Institute of Technology, Sweden

DAVID BROMAN, KTH Royal Institute of Technology, Sweden

Traditionally, a grammar defining the syntax of a programming language is typically both context free and

unambiguous. However, recent work suggests that an attractive alternative is to use ambiguous grammars,

thus postponing the task of resolving the ambiguity to the end user. If all programs accepted by an ambiguous

grammar can be rewritten unambiguously, then the parser for the grammar is said to be resolvably ambiguous.

Guaranteeing resolvable ambiguity statically—for all programs—is hard, where previous work only solves it

partially using techniques based on property-based testing. In this paper, we present the first efficient, practical,

and proven correct solution to the statically resolvable ambiguity problem. Our approach introduces several

key ideas, including splittable productions, operator sequences, and the concept of a grouper that works in

tandem with a standard parser. We prove static resolvability using a Coq mechanization and demonstrate its

efficiency and practical applicability by implementing and integrating resolvable ambiguity into an essential

part of the standard OCaml parser.

CCS Concepts: • Software and its engineering→ Syntax; Parsers.

Additional Key Words and Phrases: Parser, Resolvable Ambiguity, Coq, OCaml

ACM Reference Format:
Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman. 2023. Statically Resolvable Ambiguity.

Proc. ACM Program. Lang. 7, POPL, Article 58 (January 2023), 27 pages. https://doi.org/10.1145/3571251

1 INTRODUCTION
The traditional approach to developing grammars and parsers for programming languages is to

construct unambiguous context-free grammars: parsing a program always results in at most one

parse tree. However, ever since the early 1960s, it is well-known that the problem of deciding

whether a context-free grammar is ambiguous or not is generally undecidable [Cantor 1962]. As a

consequence, many variants of restricted grammars have been developed which make it decidable

to check if it is ambiguous or not [Aho et al. 2006; Cooper and Torczon 2011; Ginsburg and Ullian

1966; Sudkamp 1997; Webber 2003]. Designing restricted unambiguous grammars has traditionally

been seen as the way of developing syntax specifications and parsers for programming languages.

Recently, we introduced the idea of resolvable ambiguity [Palmkvist et al. 2021]. Instead of

requiring the grammar to be unambiguous, the ambiguity check is postponed to parse time. That

is, if a program cannot be parsed unambiguously, the compiler rejects the program and asks

the user to resolve the program by rewriting the program in such a way that it can be parsed

unambiguously. Several authors of previous work acknowledge the usefulness of enabling ambiguity

in grammars [Danielsson and Norell 2011; de Souza Amorim and Visser 2020; Palmkvist and Broman

2019; The dafny-lang community 2022]. However, an ambiguous grammar is only useful if all

Authors’ addresses: Viktor Palmkvist, Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm, Sweden;

Elias Castegren, Uppsala University, Uppsala, Sweden; Philipp Haller, Digital Futures and EECS, KTH Royal Institute of

Technology, Stockholm, Sweden; David Broman, Digital Futures and EECS, KTH Royal Institute of Technology, Stockholm,

Sweden.

© 2023 Copyright held by the owner/author(s).

This is the author’s version of the work. It is posted here for your personal use. Not for redistribution. The definitive Version

of Record was published in Proceedings of the ACM on Programming Languages, https://doi.org/10.1145/3571251.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

HTTPS://ORCID.ORG/0000-0003-0669-4085
HTTPS://ORCID.ORG/0000-0003-4918-6582
HTTPS://ORCID.ORG/0000-0002-2659-5271
HTTPS://ORCID.ORG/0000-0001-8457-4105
https://doi.org/10.1145/3571251
https://orcid.org/0000-0003-0669-4085
https://orcid.org/0000-0003-4918-6582
https://orcid.org/0000-0002-2659-5271
https://orcid.org/0000-0001-8457-4105
https://doi.org/10.1145/3571251

58:2 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

programs allowed by the grammar can be resolved. Specifically, it would be directly dissatisfactory

if a user can write a program that is parsed and reported by the compiler to be ambiguous, but is

impossible to rewrite in an unambiguous manner. State-of-the-art solutions [Palmkvist et al. 2021]

can perform comprehensive property-based testing, which gives fairly good confidence that the

grammar is resolvably ambiguous, but there are no static guarantees.

It is currently unknown whether the general decision problem of resolvable ambiguity for

context-free grammars is decidable, but it is likely not the case. As a consequence, it is an open

problem to design a solution that (i) is expressive enough to accept standard programming language

syntax, (ii) gives formal guarantees for the absence of unresolvable ambiguities statically, and (iii)

makes it possible to implement checkers and parsers that are efficient and useful in practice. We say

that a solution to this problem handles statically resolvable ambiguity in a correct and efficient way.

In this paper, we solve this open problem by designing a modular approach where the new

concept of a grouper is used together with a parser. The solution is extensible and expressive

(any standard parser can be used with the grouper), efficient (we show how essential parts of the

standard OCaml parser can be efficiently replaced with our approach), and correct (we formalize

the semantics in Coq and prove that all programs are resolvable given certain mild assumptions).

Key ideas of our solution include the concepts of splittable productions and grouping of operator
sequences, where the standard parser produces a sequence of operators that are later grouped into

an abstract syntax tree.

Concretely, we make the following contributions:

• We develop and formalize the novel approach of implicit and explicit grouping that allows

an end-user to resolve ambiguities. The grouper can be embedded in a traditional parser in a

straightforward manner (Section 3).

• We provide a mechanized proof of correctness in Coq, stating that only resolvable ambiguities

are possible, given certain mild assumptions about splittable productions (Section 4).

• We implement our approach as a library and evaluate it empirically using two case studies.

Firstly, we show how the standard OCaml compiler’s parser can be replaced with our ap-

proach, yielding a complete parser with resolvable ambiguities that is both efficient and usable

in practice. Secondly, we develop a new parser generator for encoding ambiguous gram-

mars, where non-trivial domain-specific languages (DSLs) can be defined using ambiguous

grammars with the static resolvable ambiguity property (Sections 5 and 6).

2 MOTIVATING RESOLVABLE AMBIGUITY AND OVERVIEW
Splitting ambiguities into two categories, resolvable and unresolvable, is not common praxis, thus

we begin this section by motivating resolvable ambiguity through examples. Next, we explain why

a static guarantee of resolvability is a strongly desirable property. Finally, we give an overview of

our approach and how it integrates into a conventional parsing approach.

2.1 Motivating Resolvable Ambiguity
Following our previous work [Palmkvist et al. 2021] we consider parsing to be a function parse
from programs to sets of ASTs. In this view, ambiguity is defined in terms of the size of the returned

set:

Definition 2.1. A program 𝑝 is ambiguous if ∃𝑡1, 𝑡2 ∈ parse(𝑝). 𝑡1 ≠ 𝑡2, i.e., it can parse as at least

two distinct ASTs.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:3

A program is resolvable if all its ASTs can be written unambiguously:

Definition 2.2. A program 𝑝 is resolvable if ∀𝑡 ∈ parse(𝑝). ∃𝑝 ′. parse(𝑝 ′) = {𝑡}.

Correspondingly, a program is unambiguous if it is not ambiguous, and unresolvable if it is not
resolvable.

We approach the motivation from three angles: pre-existing languages, composing languages or

combining libraries, and creating new domain-specific languages.

2.1.1 Pre-existing Languages. Consider the operators == (equality) and & (bitwise and). These

operators are are commonly available with the same syntax and semantics in many programming

languages. This means that, e.g., the expression 1 & 2 == 3 is valid in a large number of

programming languages. However, despite knowing the semantics of every component of the

expression, a reader can be forgiven for being unsure of what it should evaluate to, since it still

differs between languages! For example, these are the informal evaluation steps for the same

expression in C and Python:

C 1 & 3 == 1 → 1 & (3 == 1) → 1 & 0 → 0
Python 1 & 3 == 1 → (1 & 3) == 1 → 1 == 1 → True

Note that the difference is not due to different semantics of the operators involved between the

languages, rather it is due to differing precedence. Both languages make a choice that can surprise

programmers; both Clang and GCC have a flag -Wparentheses to warn about the surprising behav-

ior, and Python does not follow C’s precedence conventions, even though most other programming

languages do.

Resolvable ambiguity presents a third choice: leave the precedence undefined and produce

an ambiguity error instead. The programmer can resolve the error by adding parentheses (with

assistance from the compiler, see the error message below), which as an added benefit means that a

later reader of the code also cannot be surprised by the behavior. Note that this approach is more

principled than the approach behind the -Wparentheses flag mentioned above.

1 Error: The program is ambiguous:
2

3 1 & (3 == 1)
4 (1 & 3) == 1

However, this does not mean that the programmer has to explicitly group every part of every

expression. For example, 𝑎 & 𝑏 & 𝑐 and 𝑎 + 𝑏 == 𝑐 can both still be unambigous (through left-

associativity and precedence, respectively); ambiguity only arises when the language designer has

chosen to leave the relative precedence of two operators undefined.

This last point somewhat subtle; precedence tends to be a total order, which leaves no room for

ambiguity, resolvable or not. Defining the meaning of precedence in the absence of a total order

is non-obvious but necessary to combine the convenience of precedence where it is commonly

known (e.g., arithmetic, comparators, etc.) with compiler-assisted explicitness in less clear cases.

As a non-operator related example, certain language constructs do not have an explicit end

marker, which means that nested uses are ambiguous in a naive grammar. “Dangling else” is a

commonly known example of this; nesting two ifs with only one else makes it non-obvious to

which if the else belongs. However, in our experience nested matches in OCaml cause problems

more often than nested ifs, especially for beginners, thus we focus on this case instead.

Consider the following example (slightly modified from [Palmkvist and Broman 2019]), where

the intent is that the last case should belong to the outer match, but OCaml’s chosen interpretation

groups it with the inner match instead:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:4 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

1 match 1 with
2 | 1 -> match "one" with
3 | str -> str
4 | 2 -> "two"

In this case, the types of the values being matched differ (int vs string), thus the OCaml compiler

provides a type error:

1 File "nested.ml", line 4, characters 2-3:
2 4 | | 2 -> "two"
3 ^
4 Error: This pattern matches values of type int
5 but a pattern was expected which matches
6 values of type string

This is surprising, because the solution is to put parentheses around the inner match, yet paren-
thesizing an expression does not change its type. Furthermore, if the types happened to agree,

then there would be no error and the code would be silently wrong. If instead the nesting was left

ambiguous the compiler could catch the error and give explicit suggestions on how to fix it.

2.1.2 Custom Operators in Libraries/Language Composition. Not all operators and operator prece-

dences are chosen by language designers; some programming languages support used-defined

operators, e.g., Haskell, Swift, F#, and Scala. In these languages, a library author can design an

interface that uses symbolic operators, a domain-specific language of sorts. These operators are

typically designed to be used together and given precedences that make them compose sensibly.

However, when combining operators from multiple libraries in a single expression, the precedence

is no longer obvious.

Some systems (e.g., Haskell) give each operator a precedence level in the form of an integer. In

these systems, operators from different libraries will have some defined precedence, however, this

precedence is essentially incidental, especially if the libraries were designed by different authors.

In a system allowing ambiguity, such incidental precedence need not appear, instead we can

leave it undefined unless explicitly specified.

2.1.3 Domain-specific Languages. Suppose we are defining a new textual modeling language,

where components are composed in series using an infix operator --, and in parallel using an infix

operator ||. For instance, an expression C1 -- C2 puts components C1 and C2 in series, whereas

C1 || C2 composes them in parallel. In such a case, what is then the meaning of the following

expression?

C1 -- C2 || C3 || C4

(C1 -- C2) || (C3 || C4)

C1

C3

C4

C2

(C1 -- (C2 || C3)) || C4

C1
C2

C3

C4

C1 -- (C2 || (C3 || C4)) ((C1 -- C2) || C3) || C4

(a) (b) (c) (d)

C3

C4

C2

C1

C1 C2

C3

C4

Fig. 1. The figure shows four different alternatives for disambiguating the expression C1 – C2 || C3 || C4.
Note that there is a fifth alternative C1 – ((C2 || C3) || C4). However, the meaning of this expression is
the same as (c) assuming the parallel operator is associative. In such a case, this expression and the expression
in (c) both mean that components C2, C3, and C4 are composed in parallel.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:5

Are there natural associativity and precedence rules for these new operators? If there are no

predefined rules of how to disambiguate this expression within the language definition, it is an

ambiguous expression, and a parser generates a set of parse trees. Consider Figure 1 which depicts

four different alternatives, each with a different meaning, depending on how the ambiguity has been

resolved. Clearly, the expression has totally different meanings depending on how the end-user

places the parentheses. However, if a language designer is forced to make the grammar of the

syntax definition unambiguous, a specific choice has to be made for precedence and associativity.

For instance, assume that the designer makes the arbitrary choice that serial composition has higher

precedence than parallel composition, and that both operators are left-associative. In such a case,

the expression without parentheses is parsed as Figure 1(d). The question is why such an arbitrary

choice—which is forced by the traditional design of unambiguous grammars—is the correct way to

interpret a domain-specific expression. The alternative, as argued for in this paper, is to postpone

the decision, and instead give an error message to the end-user (programmer or modeler), and

expose different alternatives that disambiguate the expression.

2.2 The Importance of Static Guarantees for Resolvability
The definition of a resolvable program (Definition 2.2 on page 3) is not a tautology; we can construct

a language in which not all syntactically valid programs are resolvable. As a somewhat trivial

example, consider an expression language with arithmetic operators, integers, and parentheses,

but no precedence. In such a language, most non-trivial expressions are ambiguous, e.g., 2 · 3 + 4

could evaluate to either 10 or 14. We can resolve the ambiguity by writing (2 · 3) + 4 or 2 · (3 + 4),
respectively, depending on our intent.

However, if the language did not have parentheses then the above example would be unresolvably

ambiguous; neither AST can be written in any other way. This is a problem, because it means that

a programmer can be faced with an error that they cannot solve; a program that cannot be written

without a parse error. In fact, only a language designer can solve the error, and only by changing

the syntax of the language.

However, a static guarantee that all syntactically valid programs are resolvable makes such a

situation impossible. A programmer might still be able to write an ambiguous program, but they

would be able to rewrite it (with compiler assistance) into an unambiguous form, thereby solving

the error.

2.3 Overview of Our Approach
Our approach centers around the idea of what we call implicit and explicit grouping. As a simple

example, consider this equation:

𝑎 + 𝑏 · 𝑐 − 𝑑 · 𝑒 = ((𝑎 + (𝑏 · 𝑐)) − (𝑑 · 𝑒))

The right-hand side uses explicit grouping (parentheses), while the left-hand side uses implicit

grouping (via precedence and left-associativity) to describe the same expression. We view an

expression as a sequence of operators (e.g., + and −, but also variables and other terminals, as

nullary operators) and provide a grouper that takes such a sequence (i.e., the left-hand side above)

and assembles it into a fully grouped expression (i.e., the right-hand side). The process of parsing

in our approach is thus a collaborative effort between two components:

• A traditional parser that identifies the components of each expression, in the form of a

sequence of operators. The parser should be unambiguous, i.e., only one sequence is produced.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:6 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Operator
SequenceParser

Program

AST

Grouped
Tree(s)Grouper

Grouped Tree 1? Ambiguity
Error

Grouping
Specification

Adjusted
Grammar

Fig. 2. An overview of a system embedding our approach in a conventional parser. The grammar used by the
parser is adjusted to parse expressions as sequences of operators, which the grouper then arranges according
to a grouping specification. If there are multiple valid trees, we produce an ambiguity error, otherwise the
singular tree is returned to the parser, which continues parsing the rest of the program.

• A grouper that takes such a sequence and returns a fully grouped tree to the parser. The

grouper handles ambiguity, i.e., it can produce multiple grouped trees, in which case the user

receives an ambiguity error.

A grouper is thus used as a subroutine by the parser, as can be seen in the overview in Figure 2.

Note that there is a direct analogue between a parser and a grouper: a parser reads a sequence of

tokens and produces an AST; a grouper reads a sequence of operators and produces a fully grouped

expression. Similarly, the behavior of a parser is typically specified by a grammar of some kind,

while our grouper follows a grouping specification:
Parser Grouper

Specification Grammar Grouping Specification

Input Token Sequence Operator Sequence

Output AST Grouped Tree(s)

We now walk through the components and flows in Figure 2 in a bit more detail. We center the

discussion around a small example language and a program written therein, both of which can be

found in Figure 3.

Splittable Productions. One production in Figure 3b bears special scrutiny: the if-then-else
production. The optional else means that nested ifs can be ambiguous if there are more ifs
than elses, i.e., the dangling else ambiguity. At this point, we have a choice: either we leave the

(resolvable) ambiguity, or we resolve it implicitly through longest match.

Regardless, all implicit grouping in our approach is handled by the grouper, thus we first express

the dangling else ambiguity in terms of operators. We do this by splitting if-then-else in two:

1 1 if isRed || isBlue then
2 2 if verbose then
3 3 print 4 ("R/B")
4 5 else
5 6 print 7 ("?")

(a) The example program being parsed. The circled num-
bers are labels; they are not part of the program, they
are used by later text and figures.

𝐸 ::= Ident | String | (𝐸)
| if 𝐸 then 𝐸 (else 𝐸)?
| 𝐸 || 𝐸 | 𝐸(𝐸)

(b) A naive (and ambiguous) gram-
mar for the example language, in
EBNF (“?” denotes “zero or one”).

Fig. 3. The program and language used as a running example.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:7

𝐸 ::= Ident | String | (𝐸)
| if 𝐸 then 𝐸
| 𝐸 else 𝐸
| 𝐸 || 𝐸 | 𝐸(𝐸)

(a) An intermediate version of Fig-
ure 3b where if-then-else has
been split into two operators.

𝐸 ::= 𝐸∗prefix 𝐸atom 𝐸∗postfix (𝐸infix 𝐸
∗
prefix 𝐸atom 𝐸∗postfix)

∗

𝐸atom ::= Ident | String | (𝐸)
𝐸prefix ::= if 𝐸 then
𝐸infix ::= || | else
𝐸postfix ::= (𝐸)

(b) The final altered grammar that recognizes operator sequences.
Note that no productions have direct edge recursion; all direct
recursion is internal.

Fig. 4. Two modified grammars based on Figure 3b. Note that the left grammar is merely an intermediate
result, the right grammar is the one used by our approach.

prefix if-then and infix else, resulting in the grammar found in Figure 4a. Note that this new

grammar is more permissive than the one in Figure 3b; this is addressed later, in the grouper.

In this section we choose to implicitly resolve the ambiguity through longest match; we return

to the ambiguous choice in Section 3.

Operator Sequences. Next, to produce the adjusted grammar mentioned to the left in Figure 2 we

modify the grammar in Figure 4a to recognize operator sequences. The transformation consists of a

simple set of steps: 1) We partition the productions of 𝐸 based on the presence or absence of direct

edge recursion, 2) we create a new non-terminal for each partition (i.e., 𝐸atom, 𝐸prefix , 𝐸infix , and

𝐸postfix), 3) we remove the edge recursion, and 4) add one new production to 𝐸. This new production

is a regular expression that recognizes a well-formed sequence of operators, which can be seen

in the beginning of Figure 4b (in EBNF, i.e., “∗” is Kleene star). Note that each production with a

subscripted 𝐸 as its left-hand side represents an operator; it contributes one element to the operator

sequence.

At this point we can make it fully clear when the grouper is invoked: every time the parser

completes a production with 𝐸 as its left-hand side, i.e., when we complete an operator sequence. In

the example this happens five times: isRed || isBlue (three operators); verbose, "R/B" and "?"
(one nullary operator each); and the entire program (seven operators). The fifth operator sequence

can be seen in Figure 5. Each operator sequence is grouped separately, and the fully grouped result

may end up inside an operator in another sequence. For example, in Figure 5, the operators labelled

1, 2, 4, and 7 each carry the results of grouping one of the other four sequences.

Grouping. The extra information carried by some operators is not used by the grouper, it is

merely passed on. This is analogous to the information carried by a token; a parser examining a

string token does not consider the exact string value, it only cares about it being a string; similarly,

the grouper does not consider the AST for the condition in if-then, only that it is an if-then
operator.

The grouper then transforms the operator sequence into one or more grouped trees according to

the grouping specification, mentioned to the left in Figure 2. Intuitively speaking, the grouping

specification has two components: the relative binding strength of two (ordered) operators,
1

and which operators are allowed as direct children for each operator. The former lets us express

precedence, associativity, and longest match; the latter ensures that if-then and else pair properly,
which addresses the overly permissive grammar in Figure 4b.

1
The knowledgeable reader may spot a similarity to the ⋖ and ⋗ relations of operator precedence grammars, see Section 7

for a more thorough comparison.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:8 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Operator

sequence

Carried

ASTs

1 if-then

||

isRed isBlue

2 if-then

verbose

3 variable

print

4 call

"R/B"

5 else 6 variable

print

7 call

"?"

Fig. 5. A sequence of operators (rounded rectangles) to be passed to the grouper. Each operator may carry one
or more previously constructed ASTs (AST-nodes are shown as rectangles with sharp corners) that the grouper
will not touch; they pass through unchanged and do not affect the grouping. Note that if-then-else is in
split form, else appears alone.

We leave the formal description of the grouping specification for the running example until

Section 3; for now it is sufficient to know that function calls have higher precedence than if, and
dangling else is resolved with longest match.

With these assumptions, the grouper takes the operator sequence in Figure 5 and produces

the (single, unambiguous) grouped tree in Figure 6a. Note that if-then-else is still split; else
appears as its own node. Note also that we consider else to be the parent of the if-then to which

it belongs (denoted by the dashed arrow). This initially unintuitive formulation is needed later, for

our guarantee of static resolvability.

To build intuition for this formulation, consider a split production as a sequence of its constituent

operators; in this case, a sequence of length two: if-then and else. This sequence must be encoded

in the grouped tree somehow. We choose to store it as a linked list, where the left child is the

previous element of the list, hence else is the parent of if-then.

Reassembling split productions. However, most ASTs do not have the form we present in our

grouped trees, e.g., if-then-else is typically one node with three children, and the fact that

3 variable

4 call

if-then2

6 variable

7 call

else5

if-then1

(a) The tree produced by the grouper, with
the carried ASTs omitted to reduce clut-
ter. Note that if-then-else is still in split
form; when constructing the final AST we
merge else with the inner if, denoted by
a dashed arrow. The choice to see else as
the parent of if-then is initially surprising,
but is necessary for our approach to static
resolvability.

print "R/B" print "?"

callverbose call

if-then-else

isBlueisRed

||

if-then

(b) The final AST aftermerging if-then-else and turning
all operators into ASTs. Typically nullary operators (e.g.,
variable) are replaced by their carried AST, while other
operators create a new node (e.g., call becomes call).

Fig. 6. The output of the grouper, first as a grouped tree, then as the final AST.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:9

a function call appears syntactically like a postfix operator is unimportant. Because of this we

post-process the grouped tree, merging split productions and generally transforming the tree into

the shape of an AST. For example, in our OCaml case study we use this step to treat semicolons as

list element separators or sequential composition, depending on the context in which they appear.

For our running example the final AST can be seen in Figure 6b.

Static resolvability. Finally, before describing the formal semantics of our grouper in the next

section, we briefly touch on the restrictions we later use to ensure static resolvability (in Section 4)

in informal terms:

• All split productions must be encoded as linked lists where the left child is the previous

element. Note that normal operators are trivial cases; lists of length one.

• We can partition the set of operators based on where they can be in a sequence representing

a split production, either they must be first, or they must not be first.
The running example adheres to this: if-then is the left child of its paired else, no other split

productions exist; and we have a clean partition, else must not be first, all other operators can

only be first. Intuitively speaking these restrictions are quite mild:

• The choice of how to encode a sequence is arbitrary and easily adjusted.

• The partitioning of operators implies that there is an operator that signals the beginning of

each production, which is typically already the case in a programming language, e.g., if,
for, or let.

3 A FORMAL SEMANTICS FOR EXPLICIT AND IMPLICIT GROUPING
We now return to the matter of the grouping specification and the workings of our grouper. The

entirety of our definitions can be found in Figure 7, the pieces of which we elaborate on in the

upcoming paragraphs.

In this formal context, an operator is represented by a label 𝑜 from a language-specified set Op.
Our rules center around the concept of a partially grouped tree, denoted by 𝑒 in the top-left of

Figure 7. Note that 𝑔 and 𝑝 are more restrictive versions of 𝑒 ; the former represents a fully grouped

tree, while the latter could also be an explicitly grouped sub-sequence. We use ℎ to introduce holes,
denoted by “_”, which represent children yet to be determined. Note that holes can only appear as

the direct child of a root node; 𝑔 allows no holes. To cut down on redundancy in our rules we also

use left and right focused frames, e.g., ⟨_ o] could represent ⟨_ o⟩, ⟨_ 𝑜 _⟩, or ⟨_ 𝑜 𝑔⟩, for some 𝑔.

Each 𝑒 has an associated label, normally an 𝑜 ∈ Op, except explicit grouping, which uses a

distinct label 𝜋 ∉ Op. We refer to this label using op, in the top-right of Figure 7.

A grouping specification has four components: bind, A↙, A↘, and Aroot , seen middle-left in

Figure 7. For example, the grouping specification for our running example, used to produce the

grouped tree in Figure 6a in Section 2.3, is as follows:

bind (𝑜1, 𝑜2) or func-call else

or ← → →
if -then → → →
else → → →

Op = {if -then, else, var, func-call, or}
Aroot (𝑜) = A↘ (𝑜) = Op ∪ {𝜋}

A↙ (𝑜) =
{
Op ∪ {𝜋} if 𝑜 ≠ else
{if -then} if 𝑜 = else

bind defines the relative binding strength of two operators appearing adjacent. It can be used to

express precedence (e.g., func-call has higher precedence than or , thus bind (or, func-call) =→),

associativity (e.g., or is left-associative, thus bind (or, or) = ←), and longest match (e.g., ∀𝑜 ∈
Op. bind (𝑜, else) =→).

Aroot , A↙, and A↘ define shallow restrictions, as sets of allowed labels, which are used to ensure

that splittable productions reassemble correctly. For example, A↙ (else) = {if -then} means that the

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:10 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Operators 𝑜 , 𝑜𝑖 ∈ Op
Label sets 𝑠 ∈ 𝑆 ⊆ Op ∪ {𝜋}
Incomplete expressions 𝑒 ::= 𝑜 | ⟨oℎ⟩ | ⟨ℎ o⟩ | ⟨ℎ 𝑜 ℎ⟩

| (𝑒 𝑒)
Grouped expressions 𝑔 ::= 𝑜 | ⟨o𝑔⟩ | ⟨𝑔 o⟩ | ⟨𝑔 𝑜 𝑔⟩
. . . or explicit grouping 𝑝 ::= 𝑔 | (𝑒 𝑒)
. . . or a hole ℎ ::= 𝑔 | _
Left-focused frame ⟨□ o] ::= ⟨□ o⟩ | ⟨□ 𝑜 ℎ⟩
Right-focused frame [o□⟩ ::= ⟨o□⟩ | ⟨ℎ 𝑜 □⟩

The label of an expression

op(𝑜) = 𝑜

op(⟨oℎ⟩) = 𝑜

op(⟨ℎ o⟩) = 𝑜

op(⟨ℎ1 𝑜 ℎ2⟩) = 𝑜

op((𝑒 𝑒)) = 𝜋

bind (𝑜1, 𝑜2) ∈ {−,←,→,↔}
A↙ (𝑜) ⊆ Op ∪ {𝜋}
A↘ (𝑜) ⊆ Op ∪ {𝜋}
Aroot ⊆ Op ∪ {𝜋}

groupings(𝑜1, 𝑠, 𝑜2) =


− if A↘ (𝑜1) ∌ 𝑠 ∉ A↙ (𝑜2)
← if A↘ (𝑜1) ∋ 𝑠 ∉ A↙ (𝑜2)
→ if A↘ (𝑜1) ∌ 𝑠 ∈ A↙ (𝑜2)
bind (𝑜1, 𝑜2) if A↘ (𝑜1) ∋ 𝑠 ∈ A↙ (𝑜2)

L-Edge

A↘ (𝑜) ⊢ 𝑝 ⇒ 𝑔

𝑒 [o _⟩ 𝑝 → 𝑒 [o𝑔⟩
˙L-Mid

A↘ (𝑜1) ⊢ 𝑝 ⇒ 𝑔 groupings(𝑜1, op(𝑝), 𝑜2) ∈ {←,↔}

𝑒1 [o1 _⟩ 𝑝 ⟨_ o2] 𝑒2 → 𝑒1 [o1 𝑔⟩ ⟨_ o2] 𝑒2

R-Edge

A↙ (𝑜) ⊢ 𝑝 ⇒ 𝑔

𝑝 ⟨_ o] 𝑒 → ⟨𝑔 o] 𝑒
˙R-Mid

A↙ (𝑜2) ⊢ 𝑝 ⇒ 𝑔 groupings(𝑜1, op(𝑝), 𝑜2) ∈ {→,↔}

𝑒1 [o1 _⟩ 𝑝 ⟨_ o2] 𝑒2 → 𝑒1 [o1 _⟩ ⟨𝑔 o2] 𝑒2

Unwrap

𝜋 ∈ 𝑆 Aroot ⊢ 𝑒 𝑒 ⇒ 𝑔

𝑆 ⊢ (𝑒 𝑒) ⇒ 𝑔
LR-Steps

op(𝑔) ∈ 𝑆 𝑒 →∗ 𝑔
𝑆 ⊢ 𝑒 ⇒ 𝑔

Fig. 7. Implicit and explicit grouping as a formal semantics. Note that there are two mutually recursive
relations: small-step→ for grouping in the top sequence and big-step⇒ for grouping sub-sequences (inside
explicit grouping) and checking shallow restrictions.

left child of else must be precisely an if -then, which ensures that no else appears alone. Note also
that these sets may include or exclude 𝜋 , e.g., 𝜋 ∉ A↙ (else). This prevents explicit grouping in the

middle of a split production, e.g., (if a then b) else c is not syntactically valid.

Finally, we turn our attention to the grouping rules at the end of Figure 7. From a formal viewpoint,

grouping takes a sequence of ungrouped expressions (i.e., a sequence 𝑒 where each ℎ is a hole _) to

a single 𝑔. Note that each occurrence of explicit grouping (𝑒 𝑒) in the input sequence contains a

nested sequence. We define grouping through two mutually recursive relations, strongly inspired

by operational semantics (both small-step and big-step):

• 𝑒 → 𝑒 , which groups a single 𝑒 towards an adjacent operator, making the former a child

of the latter. Repeatedly applying this relation (through the reflexive closure→∗) groups a
sequence into a single tree.

• 𝑆 ⊢ 𝑒 ⇒ 𝑔 ensures that all nested sequences are fully grouped, either by recursing inside

explicit grouping (rule Unwrap) or by applying→∗ (rule LR-Steps).
Both→ and⇒ take sequences of expressions to sequences of expressions (𝑔 denotes a subset of

𝑒). The relation⇒ additionally has a set of allowed labels 𝑆 . This is used to check the shallow

restrictions in a context: 𝑆 ⊢ 𝑒 ⇒ 𝑔 states that 𝑒 groups to 𝑔 and is shallowly allowed by 𝑆 . If 𝑒 is an

explicitly grouped sub-sequence (i.e., (. . .)) this amounts to 𝜋 ∈ 𝑆 , otherwise op(𝑔) ∈ 𝑆 .

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:11

The rules for→ share a lot of structure, thus we explain one rule in detail and generalize from

there. L-Mid groups a child to the left and applies when said child is somewhere in the middle of
the sequence (as opposed to at the edge, i.e., first or last). We take a 𝑝 (a fully grouped tree or an

explicitly grouped sub-sequence), surrounded by two operators 𝑜1 and 𝑜2 and group it to the left,

i.e., it becomes the right child of 𝑜1. Everything else is left unchanged (the surrounding sequences

𝑒1 and 𝑒2 as well as the other operator 𝑜2). The first premise checks the shallow restrictions implied

by 𝑜1 and ensures that the child is fully grouped (note that we use the fully grouped 𝑔 on the

right-hand side of the conclusion, not 𝑝). The second premise uses the helper function groupings to
check that the grouping specification allows grouping left.

The definition of groupings considers three labels: the operator 𝑜1 on the left, the potential child

with label 𝑠 , and the operator 𝑜2 on the right. If only one direction is allowed by the shallow

restrictions we return that, otherwise we defer to bind.
R-Mid then flips the direction (and exchanges A↘ (𝑜1) with A↙ (𝑜2)), while L-Edge and R-Edge

drop the second premise since there is only one adjacent operator.

Returning to our running example, consider the operator sequence in Figure 5. The right-most

derivation can be seen below. Note three things: 1) we abbreviate if -then as if and func-call as fc, 2)
we highlight the child that was grouped with a gray background, and 3) we show the relevant parts

of the grouping specification on the right, omitting the repeated A↘ and A↙ to reduce clutter.

Derivation Grouping Specification

⟨if _⟩ ⟨if _⟩ var ⟨_ fc⟩ ⟨_ else _⟩ var ⟨_ fc⟩ A↘ (𝑜1) ∋ 𝑠 ∈ A↙ (𝑜2) bind (𝑜1, 𝑜2)
R-Mid−−−−→ ⟨if _⟩ ⟨if _⟩ var ⟨_ fc⟩ ⟨_ else _⟩ ⟨ var fc⟩ else ∋ var ∈ fc →
L-Edge

−−−−−→ ⟨if _⟩ ⟨if _⟩ var ⟨_ fc⟩ ⟨_ else ⟨var fc⟩ ⟩ else ∋ fc
R-Mid−−−−→ ⟨if _⟩ ⟨if _⟩ ⟨ var fc⟩ ⟨_ else ⟨var fc⟩⟩ if ∋ var ∈ fc →
L-Mid−−−−→ ⟨if _⟩ ⟨if ⟨var fc⟩ ⟩ ⟨_ else ⟨var fc⟩⟩ if ∋ fc ∉ else
R-Mid−−−−→ ⟨if _⟩ ⟨ ⟨if ⟨var fc⟩⟩ else ⟨var fc⟩⟩ if ∋ if ∈ else →
L-Edge

−−−−−→ ⟨if ⟨⟨if ⟨var fc⟩⟩ else ⟨var fc⟩⟩ ⟩ if ∋ else
LR-Steps

=======⇒ ⟨if ⟨⟨if ⟨var fc⟩⟩ else ⟨var fc⟩⟩⟩ if ∈ Aroot

Note that the above derivation is not unique, e.g., we could group the first func-call earlier without
changing the final result. However, all valid derivations for this input sequence give the same result;

this input is unambiguous.

As an ambiguous example, consider the case where we redefine bind such that bind (𝑜, else) =↔
for all 𝑜 (instead of→). This has the effect of removing longest match disambiguation for dangling

else. As such, the above derivation is still valid with one minor change: the final application of

R-Mid has↔ under bind (𝑜1, 𝑜2) instead of→. More interestingly, we can now change that step

from R-Mid to L-Mid:

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:12 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Derivation Grouping Specification

⟨if _⟩ ⟨if _⟩ var ⟨_ fc⟩ ⟨_ else _⟩ var ⟨_ fc⟩ A↘ (𝑜1) ∋ 𝑠 ∈ A↙ (𝑜2) bind (𝑜1, 𝑜2)
. . . The first four→ steps as before. . .

L-Mid−−−−→ ⟨if ⟨if ⟨var fc⟩⟩ ⟩ ⟨_ else ⟨var fc⟩⟩ if ∋ if ∈ else ↔
R-Edge

−−−−−→ ⟨ ⟨if ⟨if ⟨var fc⟩⟩⟩ else ⟨var fc⟩⟩ if ∈ else
LR-Steps

=======⇒ ⟨⟨if ⟨if ⟨var fc⟩⟩⟩ else ⟨var fc⟩⟩ if ∈ Aroot

Both of these derivations are now valid, and they give different final results, i.e., the input is

ambiguous.

We are now ready to formally state the assumptions we use to ensure static resolvability. Our

assumptions center around consistent handling of splittable productions; how we find the operators

that belong to the same split production, and whether each operator must be first or not in such a

production. We consider a child to be in the same split production as its parent if surrounding the

child with explicit grouping would make a derivation of the given grouped tree impossible.

For example, if we surround the if -then in ⟨⟨if -then var⟩ else var⟩ with explicit grouping we can

no longer construct a valid derivation; there is no derivationAroot ⊢ (⟨if -then _⟩ var) ⟨_ else _⟩ var ⇒
⟨⟨if -then var⟩ else var⟩. Equivalently: we can add explicit grouping without losing the derivation if

if -then ∈ Aroot and 𝜋 ∈ A↙ (else). In this case, the latter is not true.

The assumption we require is that only the left child can ever be in the same split production,

and we can split Op in two disjoint sets based on whether an operator must appear first in a split

production or must not appear first. Formally:

Definition 3.1. A grouping specification is consistently split if:

(1) ∀𝑜 ∈ Op. 𝜋 ∈ A↘ (𝑜), i.e., all operators allow a parenthesized expression as their right child.

(2) ∀𝑜 ∈ Op. A↘ (𝑜) ⊆ Aroot , i.e., all operators that can be right children can also appear as the

root of an expression.

(3) For each operator 𝑜 ∈ Op one of the following must apply:

• 𝜋 ∉ A↙ (𝑜) ∨ A↙ (𝑜) ∩ Aroot = ∅, i.e., parenthesizing the left child invalidates the current

tree.

• 𝜋 ∈ A↙ (𝑜) ∧ A↙ (𝑜) ⊆ Aroot , i.e., parenthesizing the left child does not invalidate the

current tree.

Points 1 and 2 together imply that splittable productions must connect through their left children,

while point 3 partitions Op: if the left child must be in the same split production, then the parent

must not be first in the split production, and vice versa. Note that the grouping specification for

our running example fulfills these criteria; it is consistently split.
We now turn to the task of proving that this assumption is sufficient for static resolvability.

4 STATIC RESOLVABILITY AND ITS MECHANIZED PROOF
In this section we present a proof that for the formalization in Section 3, given a grouping specifica-

tion that is consistently split as defined in Definition 3.1, all ambiguous input is resolvable. In other

words, for any input 𝑒 that groups to some result 𝑔, there is some input 𝑒 ′ which groups unambigu-

ously to 𝑔. We begin by outlining the proof in Section 4.1 and then present the mechanization in

Coq in 4.2.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:13

flatten(𝑜) = 𝑜

flatten(⟨𝑔𝑙 o⟩) = wrap?(A↙ (𝑜), flatten(𝑔𝑙)) ⟨_ o⟩
flatten(⟨o𝑔𝑟 ⟩) = ⟨o _⟩ wrap?(A↘ (𝑜), flatten(𝑔𝑟))

flatten(⟨𝑔𝑙 𝑜 𝑔𝑟 ⟩) = wrap?(A↙ (𝑜), flatten(𝑔𝑙)) ⟨_ 𝑜 _⟩ wrap?(A↘ (𝑜), flatten(𝑔𝑟))

wrap?(𝑆, 𝑒) =
{

(𝑒) if 𝜋 ∈ 𝑆
𝑒 if 𝜋 ∉ 𝑆

LOpen

lopen(⟨_ o])
ROpen

ropen([o _⟩)
PF-Single

¬lopen(𝑒) ¬ropen(𝑒)
op(𝑒) ∈ 𝑆 op(𝑒) ≠ 𝜋

𝑆 ⊢ parform(𝑒)

PF-()-L

lopen(𝑒 ′) ¬ropen(𝑒 ′)
op(𝑒 ′) ∈ 𝑆 𝜋 ∈ A↙ (op(𝑒 ′))

Aroot ⊢ parform(𝑒)
𝑆 ⊢ parform((𝑒) 𝑒 ′)

PF-()-R

¬lopen(𝑒 ′) ropen(𝑒 ′)
op(𝑒 ′) ∈ 𝑆 Aroot ⊢ parform(𝑒)

𝑆 ⊢ parform(𝑒 ′ (𝑒))

PF-()-LR

lopen(𝑒 ′) ropen(𝑒 ′)
op(𝑒 ′) ∈ 𝑆 𝜋 ∈ A↙ (op(𝑒 ′))

Aroot ⊢ parform(𝑒𝑙) Aroot ⊢ parform(𝑒𝑟)
𝑆 ⊢ parform((𝑒𝑙) 𝑒 ′ (𝑒𝑟))

PF-L

lopen(𝑒 ′) ¬ropen(𝑒 ′)
op(𝑒 ′) ∈ 𝑆 𝜋 ∉ A↙ (op(𝑒 ′))
A↙ (op(𝑒 ′)) ⊢ parform(𝑒)

𝑆 ⊢ parform(𝑒 𝑒 ′)

PF-LR

lopen(𝑒 ′) ropen(𝑒 ′)
op(𝑒 ′) ∈ 𝑆 𝜋 ∉ A↙ (op(𝑒 ′))

A↙ (op(𝑒 ′)) ⊢ parform(𝑒𝑙) Aroot ⊢ parform(𝑒𝑟)
𝑆 ⊢ parform(𝑒𝑙 𝑒 ′ (𝑒𝑟))

LM-LR-Steps

op(𝑔) ∈ 𝑆 𝑒 →∗LM 𝑔

𝑆 ⊢ 𝑒 ⇒LM 𝑔
LM-L-Edge

∀𝑒 ∈ 𝑒 . ropen(𝑒)
A↘ (𝑜) ⊢ 𝑝 ⇒LM 𝑔

𝑒 [o _⟩ 𝑝 →LM 𝑒 [o𝑔⟩
. . .

Fig. 8. Operations and properties used in the proof of static resolvability. The remaining rules of the relations
⇒LM and→LM are similar to the ones shown here.

4.1 Proof Outline
The intuition for our method of deciding resolvability is as follows. We start from some sequence

𝑒 which is fully ungrouped (all occurrences of ℎ is a hole _) and group it to some fully grouped

expression 𝑔. We can then flatten 𝑔 to a different fully ungrouped sequence 𝑒 ′ with the maximal

number of grouping parentheses inserted. If this sequence can be grouped in exactly one way (i.e.,

back to 𝑔), then the original input 𝑒 is resolvably ambiguous. Conversely, if the fully parenthesized

sequence 𝑒 ′ is ambiguous, then there is no input that unambiguously groups to 𝑔 (in other words,

adding more parentheses does not disambiguate the sequence further).

The property we are after is that of static resolvability, meaning that any input 𝑒 which groups

to some 𝑔 has a corresponding 𝑒 ′ which unambiguously groups to 𝑔. Intuitively we show this by

proving that for consistently split grouping specifications one can always add enough parentheses

to allow unambiguous parsing.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:14 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Figure 8 contains the operations and properties used in the proof. We define an operation

flatten(𝑔) which takes a fully grouped expression to a fully ungrouped, fully parenthesized (where
allowed) sequence. We also define the property parform(𝑒), which is the shape of a sequence that

has been flatten’d, or that is the result of (partially) grouping such a sequence under a consistently
split grouping specification. The label set 𝑆 in the relation is used to track that sub-expressions

only appear where they are allowed. It will generally be omitted below, as it is uninteresting for the

top-level expression (any label set containing the label of the root expression is valid). Note that

parform only requires parentheses around ungrouped expressions – in particular, parform(𝑔) holds
even though a fully grouped expression 𝑔 contains no parentheses. Also note that there is no rule

with a non-parenthesized sequence to the right of an expression. This is because a consistently

split grouping specification always allows parentheses around the right child of a node.

We show that the flatten operation results in a sequence that is in parform and that it gives a

sequence that can be grouped to its origin:

Lemma 4.1. For consistently split specifications, for all grouped expressions 𝑔, parform(flatten(𝑔))
Lemma 4.2. For consistently split specifications, for all grouped expressions 𝑔, if op(𝑔) ∈ 𝑆 then

𝑆 ⊢ flatten(𝑔) ⇒ 𝑔

In order to simplify determining if a sequence can be grouped in exactly one way we introduce

a variant of the grouping semantics that always groups the left-most expression in a sequence.

We use 𝑆 ⊢ 𝑒 ⇒LM 𝑔 and 𝑒 →LM 𝑒 ′ to denote such left-most grouping. Two of the rules are

shown in Figure 8. The rules are same as in Figure 7, except that they use⇒LM and→LM in their

premises. The rules for→LM additionally adds the requirement that every expression to the left of

the expression being grouped (𝑒 in L-Edge and 𝑒1 in L-Mid and R-Mid) is a right-focused frame

with a hole: [o _⟩ (captured by the rule ROpen). This requirement ensures that a grouping step

always performs the left-most grouping possible.

The left-most grouping semantics has two important properties. Firstly, it preserves parform:

Lemma 4.3. Given a sequence 𝑒 for which parform(𝑒) holds, if 𝑒 →𝐿𝑀 𝑒 ′, then parform(𝑒 ′).
Secondly, starting from a sequence in parform, the left-most grouping semantics is deterministic:

Lemma 4.4. For consistently split specifications, if parform(𝑒), 𝑒 →𝐿𝑀 𝑒1 and 𝑒 →𝐿𝑀 𝑒2, then
𝑒1 = 𝑒2.

Together, Lemma 4.3 and 4.4 give that any sequence in parform is unambiguously grouped to

some 𝑔 using left-most grouping:

Lemma 4.5. For consistently split specifications, if parform(𝑒), 𝑆 ⊢ 𝑒 ⇒LM 𝑔1 and 𝑆 ⊢ 𝑒 ⇒LM 𝑔2,
then 𝑔1 = 𝑔2.

Finally, we show equivalence between the two versions of the semantics:

Lemma 4.6. 𝑆 ⊢ 𝑒 ⇒ 𝑔 iff 𝑆 ⊢ 𝑒 ⇒𝐿𝑀 𝑔.

The proof going from right to left is straightforward, as a left-most derivation is also a valid

derivation in the original semantics. Going in the other direction is slightly more involved as

grouping can happen in any order.

Using these lemmas we can show that the assumption of consistently split grouping specifications

is sufficient for static resolvability:

Theorem 4.7 (Static Resolvability). For consistently split specifications, given any input sequence
𝑒 such that 𝑆 ⊢ 𝑒 ⇒ 𝑔, there exists some sequence 𝑒 ′ such that for all 𝑔′ where 𝑆 ⊢ 𝑒 ′⇒ 𝑔′, we have
𝑔′ = 𝑔.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:15

Proof. For the input sequence 𝑒 where 𝑆 ⊢ 𝑒 ⇒ 𝑔, we have that 𝑆 ⊢ flatten(𝑔) ⇒ 𝑔 by

Lemma 4.2. We also have parform(flatten(𝑔)) by Lemma 4.1. By Lemma 4.6 we have that 𝑆 ⊢
flatten(𝑔) ⇒𝐿𝑀 𝑔 and by Lemma 4.5 that for any 𝑔′, 𝑆 ⊢ flatten(𝑔) ⇒LM 𝑔′ implies 𝑔′ = 𝑔.

Through Lemma 4.6 we can lift that final result back to the original semantics, giving us that for

any 𝑔′, 𝑆 ⊢ flatten(𝑔) ⇒ 𝑔′ implies 𝑔′ = 𝑔. □

4.2 Mechanization
Wehavemechanized the proof of static resolvability in Coq (∼7000 lines), using the non-constructive
TLC library [Charguéraud 2022]. The formulation closely follows the semantics from Figure 7 and

the proof outlined above. The existing mechanization of Lemmas 4.1 through 4.5 is for an older

version of the semantics, but we have proved equivalence between the new and old versions so

that we can transfer the results to the semantics presented in Figure 7.
2

The syntax for expressions presented in Figure 7 is represented as a single type node, corre-
sponding to 𝑒 extended with holes _. We use predicates to distinguish between the different kinds

of expressions, e.g., is_node for nodes in 𝑒 and is_grouped for nodes in 𝑔. We represent sets as

functions to bool. The inductive relations representing semantics for grouping, GSteps for⇒ and

LRSteps for→, are parameterized over a predicate Pre: list node -> Prop that must hold for

the prefix of the sequence being operated on. This allows us to express both⇒ and⇒𝐿𝑀 using the

same inductive definition. For example, the left-to-right case of Lemma 4.6 is formulated as below:

1 Lemma leftmost_to_gsteps :
2 forall allowed input g,
3 GSteps (Forall is_ropen) allowed input \[g] →
4 GSteps (fun _ ⇒ true) allowed input \[g].

The conclusion of the theorem is equivalent to 𝑆 ⊢ 𝑒 ⇒ 𝑔, where allowed is 𝑆 and input is 𝑒
(\[g] is the syntax we use for singleton lists, to avoid a syntax clash with TLC). The predicate

is_ropen in the premise holds for right-focused frames. Additionally, we define a version of the

grouping semantics that ensures that we start from ungrouped (fully_open) input:

1 Definition InputStepsTo (ns : list node) (n : node) :=
2 Forall is_fully_open ns ∧ GSteps (fun _⇒ true) allowed_top ns \[n].

Definition 3.1 is translated in a straightforward manner:

1 Definition GroupingAssumption := forall o,
2 (* 1 *) allowed_right o par_label
3 (* 2 *) ∧ (forall o', allowed_right o o' → allowed_top o')
4 (* 3 *) ∧ ((allowed_left o par_label ∨
5 (forall o', allowed_left o o' ∨ allowed_top o'))
6 ∨ (allowed_left o par_label ∧
7 forall o', allowed_left o o' → allowed_top o')).

The definitions of (un)ambiguity and resolvability are parameterised over types input and

output and a relation ParsesAs: input -> output:

1 Definition Unambiguous (text : input) :=
2 forall p p': output,
3 ParsesAs text p ∧ ParsesAs text p' →
4 p = p'.

1 Definition Resolvable (text : input) :=
2 forall p: output,
3 ParsesAs text p→
4 exists text', ParsesAs text' p ∧
5 Unambiguous text'.

Finally, our main theorem is stated as below, which after expansion is equivalent to Theorem 4.7:

1 Theorem static_resolvability : forall input,
2 GroupingAssumption→ Resolvable InputStepsTo input.

2
Formulating the proof without the old semantics is just a matter of proof engineering.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:16 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

5 ADAPTING OCAML EXPRESSIONS TO USE A GROUPER
The bulk of our empirical evaluation consists of a modification to the canonical OCaml compiler to

use our approach for parsing expressions. This section describes our overall approach to making

such a modification, and the challenges encountered along the way.

The OCaml compiler uses Menhir [Pottier and Régis-Gianas 2005], an LR(1) parser generator,

for its parser. We thus edit the Menhir grammar such that it parses operator sequences and hands

them to our grouper as a part of the semantic action for each of the relevant productions.

The precedence and associativity of expressions in the original grammar is expressed through a

mix of Menhir’s precedence annotations and splitting expressions into multiple non-terminals. Our

modification follows the process described in Section 2.3; we collect the various expression produc-

tions, then partition them based on edge recursion, and so on. However, the regular expression

describing operator sequences is not quite as simple as the one in Figure 4b; OCaml has a number of

operators that may not appear syntactically adjacent. For example, function application and unary

negation may not appear adjacent; 1 - 2 should be interpreted as 1 ⟨_ − _⟩ 2, not 1 ⟨_ _⟩ ⟨- _⟩ 2.

Handling this is tedious but straightforward; we describe an operator sequence using a set of

mutually recursive non-terminals named according to the last operator in the sequence. In practice

we need four such non-terminals, each describing an operator sequence ending in:

• . . . a right-closed operator.

• . . . a right-closed operator except postfix semicolon (to handle an LR(1) conflict between

postfix semicolon and infix semicolon).

• . . . a right-open operator.

• . . . a right-open operator except function application.

Each production consists of up to two symbols: possibly a non-terminal for the preceeding operator

sequence, and a non-terminal choosing between one or more operators, paired to restrict adjacent

operators correctly. The sole exception is infix semicolon; the corresponding productions parse the

next operator as well, to avoid a reduce/reduce LR(1) conflict, mentioned above. For example, the

grammar below shows the productions relating to semicolon and minus:

ExprSeqrclosed ::= ExprSeqrclosed Exprsemi (Postfix ;)
| ExprSeqrclosed Exprsemi ExprAtom (Infix ;, then a nullary operator)

ExprSeqropen ::= ExprSeqrclosed Exprsemi ExprPrefix (Infix ;, then a prefix operator)

| ExprSeqropen, no app Exprminus (Prefix -)
| Exprminus (Prefix -, beginning of sequence)

Note that prefix - either starts the operator sequence (the last production), or the previous operator
must not be a function application, as denoted by ExprSeqropen, no app.

5.1 Challenges
As expected of any more complicated language, OCaml is not without its challenges to describe. This

section lists the most significant challenges we encountered throughout the course of development.

Semicolons as Sequential Composition and a Separator. A semicolon in OCaml code can have one

of two meanings:

• It could be sequential composition, i.e., an infix operator such that a; b evaluates a for its
side-effects, then evaluates b and returns its result.

• It could be a separator in a list or a record, e.g., [1; 2; 3] is a list of three elements.

Furthermore, sequential composition is not the lowest precedence operator. For example, let has

lower precedence, thus [1; let x = 2 in x; 3] is a list of two elements, not three. The canonical

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:17

1 [1; 2; let x = 3 in x; 4]

(a) Example input

[]

;

1 ;

2 let x = 3 in

;

x 4

(b) Concrete syntax tree

[]

1 2 let x = 3 in

;

x 4

(c) Abstract syntax tree

Fig. 9. Turning sequential composition into list element separators, before (concrete syntax) and after (abstract
syntax).

OCaml parser has specialized non-terminals for expressions in these two types of context. We

solve it slightly differently: we group expressions exactly the same, always treating semicolon

as sequential composition when grouping, and then treating them differently when converting

the grouped tree to an AST. When we are in a list context we translate sequential composition

along the top of the expression to list elements, otherwise to sequential composition as normal. See

Figure 9 for an example.

An important point here is why this is at all possible and correct: the OCaml grammar is written

such that the precedence level of semicolon is consistent, regardless of whether it is sequential

composition or an element separator in a list. Our implementation makes this explicit. For records

the story is a bit more complicated, see Section 5.1.

Finally, OCaml also allows terminating an expression with semicolon, to mirror its use in more

imperative languages. In our system this takes the shape of a postfix operator. However, due to a

technicality of the Menhir grammar this operator cannot appear as the left child of an operator.

The examples below
3
use the infix operator |>, where x |> f is alternate syntax for f x, i.e., f

applied to x. The comment on the right is the result of attempting to evaluate the expression using

the canonical OCaml compiler:

1 1 |> fun x -> x (* 1 *)
2 1; |> fun x -> x (* Error: Syntax error at |> *)
3 let f x = x in 1; |> f (* Error: Unbound value f *)
4

5 (* The last expression is seen as follows: *)
6 (let f x = x in 1;) |> f

This behavior is surprising because both ; and |> have higher precedence than let, yet let ends

up binding stronger than |> since otherwise ; would be the left child of |>, which is not allowed

according to the OCaml grammar.

Though unconventional, this behavior is nonetheless simple to express in our system; we merely

add the shallow restriction that postfix semicolon must never be a left child of any node.

3
The third expression is a simplified version of one appearing in the OCaml source code.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:18 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Representing if-then-else as a Split Production. We split if-then-else as presented earlier

(e.g., Section 2.3): a prefix operator if-then and an infix operator else, where else may only

appear as the right child of if-then. To implement longest match we define bind (if -then, else) =→.

If we instead want to keep the dangling else ambiguity, we define bind (if -then, else) =↔, with no

other changes necessary.

Additionally, as an interesting sidenote, this approach of applying precedence to if-then-else
does not quite preserve the language of a naive grammar without precedence

4
. For example, if

a then b; c else d is not syntactically valid in OCaml, since ; has lower precedence than if,
even though a naive grammar would recognize this expression

5
.

Representing match as a Split Production. OCaml has three constructs for pattern matching: match,
function, and try. Each of these has their own syntax for how to start a match, but share syntax for

the list of cases. We split these into three prefix operators (match-with, try-with, and function)
and one infix operator (match-arm). Additionally, we state that the left child of match-arm must

be precisely one of these four operators. Note that this is quite similar to the representation of

if-then-else: each time one of these split productions is parsed it is represented by one prefix

operator and some number of infix operators. There are two major differences:

• Match has three options for which prefix operator is used: match-with, try-with, or
function, whereas if only has if-then.
• if-then-else can have zero or one infix operator while match can have zero or more, due
to the shallow restrictions chosen.

Splitting Records. OCaml records, similarly to lists, use semicolon as a separator between fields.

Each field has an identifier, a type, and a value, but only the identifier is required:

1 let pun = true in
2 { a: int = 4; b = 2; pun }
3

4 (* is the same as *)
5

6 let pun = true in
7 { a: int = 4; b: int = 2; pun: bool = pun }

Once again we need precedence information to distinguish separating semicolons from sequential

composition, thus we wish to parse the entire record content as a single expression, then turn

the grouped tree into the appropropriate record. Unfortunately, the syntax of an ordinary OCaml

expression has two distinctions from the syntax of a record:

• The infix comparison operator, =, has higher precedence than some other operators that

could appear in the value of a field, and it also associates to the left. We can work around

this by post-processing the grouped tree to rearrange it such that the left-most = is higher in

the tree.

• Type constraints do not have the form expr: type, rather they are written (expr: type),
where the surrounding parentheses are required.

The latter issue is not easily worked around. We believe that it should be possible to exploit the

large overlap between the syntax of types and the syntax of expressions to use our approach to

parse both at the same time, instead of separately, but leave that for future work.

Fortunately, explicit type annotations on record fields are rare: only two files in the OCaml

compiler use them, and then only in the testsuite to make sure they are supported properly. After

4
This is also true for the approach used by the canonical OCaml compiler

5
In fact, the expression is unambiguous in the naive grammar

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:19

removing these occurrences from the files in question our version of the compiler parses them the

same as the canonical version.

6 IMPLEMENTATION AND EVALUATION
To evaluate our approach in a practical setting, we have implemented a grouper following the

semantics in Section 3, as a library. We have then used this library in two larger projects:

• First, we have adjusted the parser in the canonical OCaml compiler such that expressions

use our approach (c.f. Section 5). Note that OCaml is an expression-focused language, i.e.,

syntax that would be statements or definitions in other languages are typically included in

expressions instead, thus this change is more significant than it may initially appear.

• Second, we have implemented a parser generator from scratch for the purpose of writing

syntax for domain-specific languages, where the grammars may be resolvably ambiguous.

This section first describes the implementation in broad strokes, followed by the two use cases.

6.1 Grouping as a Library
The grouper is implemented as a library consisting of ∼800 lines of MCore, the OCaml-like core

language of the Miking project [Broman 2019], which we compile to OCaml. The interface is given

in a streaming style, i.e., each operator is supplied one at a time, instead of as the complete sequence.

To achieve efficiency even for highly ambiguous inputs we do not construct all valid trees directly,

instead we compute a shared packed parse forest (SPPF) representing the set of valid trees.

The interface uses generalized algebraic datatypes to signal whether an operator is left and/or

right open. Technically, this is not necessary for the implementation, but it provides additional

safeguards when using the library. For example, if the type of an operator is Operator l r, then
an infix operator should have type Operator LOpen ROpen, while a prefix operator should have

type Operator LClosed ROpen.
The grouping specification is given in the form of five functions:

• topAllowed : ∀𝑙, 𝑟 . Operator 𝑙 𝑟 → Bool, corresponding to Aroot .

• leftAllowed : ∀𝑙, 𝑙 ′, 𝑟 . Operator LOpen 𝑟 × Operator 𝑙 ′ 𝑟 → Bool, corresponding to A↙.
• rightAllowed : ∀𝑙, 𝑟 , 𝑟 ′. Operator 𝑙 ROpen × Operator 𝑙 𝑟 ′→ Bool, corresponding to A↘.
• groupingsAllowed : ∀𝑙, 𝑟 . Operator 𝑙 ROpen × Operator LOpen 𝑟 → AllowedDirection,
corresponding to bind. AllowedDirection is here an enumeration with one option for each

element in {−,←,→,↔}.
• Finally, for implementation reasons, checking if 𝜋 ∈ A↙ (𝑜) and 𝜋 ∈ A↘ (𝑜) is given its own

function: parenAllowed : ∀𝑙, 𝑟 . Operator 𝑙 𝑟 → AllowedDirection.

The library also provides a function for computing the resolutions of an ambiguous program.

However, the number of alternatives in a particularly ambiguous expression can be 𝑂 (𝑛!) in the

input length, thus the library computes partial resolutions that only resolve the top node in the

AST, thus producing 𝑂 (𝑛) resolutions. This means that a user might encounter an ambiguity error,

follow one of the suggested resolutions, then be given a new, smaller, ambiguity error. In practice

this appears to be a minor nuisance at worst and helpful in reducing clutter at best. However, there

should be no practical obstacle to implementing complete resolutions and falling back to partial

resolutions if the input is too ambiguous, but this is presently not implemented.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:20 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

6.2 Re-implementing Expressions in OCaml
We have used our grouper library to describe OCaml’s expression language, including integrating

it into the canonical OCaml compiler.
6
We do this in two steps: first we follow the canonical parser

closely, then we drop some disambiguation choices made in the canonical compiler. The first step is

quite accurate: when parsing source of the OCaml compiler itself we produce identical parse trees

(including location information) for 2281/2283 files. The second step has two variations: one with

dangling-else, and one with both dangling-else and no longest match disambiguation for match.
All in all, we have four versions of the compiler:

original: The unmodified canonical OCaml compiler. We base all our experiments on version

4.14.0, git commit cd105d9.

unamb: The compiler using our approach for expressions that follows the canonical compiler as

closely as possible.

ambif: The compiler with our approach and the dangling else ambiguity.

ambmatch: The compiler with our approach, the dangling else ambiguity, and no longest match

disambiguation for nested match.

Our formulation of the OCaml expression language adheres to the assumption presented in Defi-

nition 3.1 on page 12, thus we know that the ambiguities introduced in the ambif and ambmatch
versions of the compiler are resolvable. Note also that the changes between unamb, ambif, and
ambmatch are trivial; two constants are changed in total (from GRight to GEither).

To evaluate the overhead of our approach we parse all source files (.ml and .mli) in all packages

we could download through Opam, the OCaml package manager
7
; approximately 1,000,000 files

over 1533 packages. However, to achieve a fair comparison we only consider the compiler versions

that we have fully bootstrapped and compiled to machine code. This includes original, unamb,
and ambif, but not ambmatch.

This is because sometimes the original author of a file relied on implicit disambiguation, some of

which we remove in ambif and ambmatch. These files must thus be updated to be explicit for the

bootstrap to work. For ambif the task is simple, only 10 files require updates, but for ambmatch it
is more work; at least 139 files, typically with multiple nested matches requiring updates.

Because of this we have fully bootstrapped versions of original, unamb, and ambif, but only a

bytecode version of ambmatch. This is enough to test correctness, but to ensure a fair performance

comparison we only use the versions that are compiled to machine code.

All in all our implementation consists of three parts:

• The syntax of operator sequences as Menhir productions, consisting of ∼80 lines describing
operator sequences, and ∼250 lines describing the operators themselves.

• Supporting code supplying shallow restrictions and how to re-merge split productions into

the normal AST produced by the parser, consisting of ∼450 lines.
• ∼1300 lines of generated code describing the bind function based on a rather smaller prece-

dence table.

6.2.1 Testing the Accuracy of unamb. The OCaml compiler already provides a means to examine

the effects of changes to the parser: the compiler can output debug representations of each parsed

AST, including source code location information. We run this on each file in the OCaml compiler

repository, comparing the results produced by both original and unamb.

6
https://github.com/ocaml/ocaml

7
https://opam.ocaml.org/

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

https://github.com/ocaml/ocaml
https://opam.ocaml.org/

Statically Resolvable Ambiguity 58:21

In summary, we compare the ASTs for a total of 2283 files and produce the exact same output for

all but 2 of them. This includes files that fail to parse, typically part of the testsuite. The files we

parse incorrectly test more exotic syntactic features, as described in Section 5.1.

We have not compared AST representations across the packages in Opam, however, out of the

1,065,363 files for which parsing succeeds with original, all but 433 succeed with unamb (i.e.,

∼0.04 % failure rate), suggesting that these features are indeed quite rarely used.

6.2.2 Benchmarks. To evaluate the overhead, we compare parse times across source code available

via Opam for the canonical compiler (original) and our two compiled versions (unamb and ambif).
Our approach is designed for user-authored code. For parsing of computer generated data (e.g.,

JSON and the like) there is no benefit to resolvable ambiguity, thus a more traditional approach

using unambiguous grammars is a better fit. For this reason all our benchmarking is focused on

user-authored code.

We use Opam to download all available packages, use the debug log to extract the location of the

downloaded source code, then parse all .ml and .mli files present.

To provide an accurate baseline for our comparisons we must measure only the time taken

to parse a file, not the startup cost of launching the OCaml compiler or other unrelated costs.

Doing this correctly in a large complicated project is non-trivial from an engineering point of view.

Fortunately, the OCaml compiler already has a flag for doing this: -dprofile. Unfortunately, this
has two notable threats to the validity of our analysis:

• Timing information is only presented when parsing succeeds. We argue that this is the most

important case, since it is typically acceptable to wait a little longer for an error message, as

long as it truly is only a little longer. For this reason we additionally measure the complete

execution time taken in case of parse failure. Of course, this new measurement contains

unrelated overheads and is thus not useful for comparisons, instead, we use it to show that

our approach is at least not prohibitively slow in case of parse failure. The slowest time

recorded in this way was 0.077 s, i.e., a user does not have to wait long for a parse error.

• The presented resolution is quite low in relation to common parse-times, 0.001 s, while a

significant number of files parse in less time. However, if the overhead of our approach is

noticeable to a user, then it would also be noticeable on measurements with this resolution,

thus this is sufficient to find a bound on the overhead for our purposes.

The latter point also means that a significant number of files are reported as parsing in 0 s, which

affects speedup/slowdown calculations. We will return to this point.

Each file is parsed five times with each compiler version; we use the median in our plots and

analysis. We choose median instead of mean due to the low parse-times in general in combination

with the low precision; small variations in parse-time, cache-effects, and spikes in the underlying

system can easily cause outliers.

The benchmarks were run over a weekend on a computer running Ubuntu 20.04 with an Intel

Core i7-8550U (4 cores) and 16 GiB of RAM. The total running time of the experiment was ∼58 h.

Note that the OCaml parser is quite fast, e.g., 99 % of files parse in at most 0.012 s (c.f. 0.018 s for

unamb and ambif). Table 1 shows these metrics.

Note that the metrics for absolute slowdown consider all files, while relative slowdown ignores

files where original finished faster than 0.001 s. As mentioned earlier, these are reported as 0 s,

and we cannot divide by zero. Roughly 45 % the parsed files are reported as 0 s by original. Of
those files, 87 % are also reported as 0 s by unamb and ambif, while the remaining files are parsed

in at most 0.006 s.

Note also that the highest relative slowdown is 6×, for both unamb and ambif. While this may

initially seem significant, closer examination of the data shows this to be a slowdown from 0.001 s

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:22 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Table 1. Summary statistics when comparing parse times across the three compiler versions. We parse each
file five times, record the median, then compute the above metrics.

Parse time (s) Relative slowdown Absolute slowdown (s)

original unamb ambif unamb ambif unamb ambif

Worst case 0.486 0.720 0.720 6× 6× 0.234 0.234

99-percentile 0.012 0.018 0.018 2× 2× 0.006 0.006

Mean 0.002 0.002 0.002 1.39× 1.39× 0.001 0.001

to 0.006 s, for two files. The individual parsetimes for these files vary between 0.002 s and 0.007 s,

i.e., relatively high variance (78 % of files have no recorded variance at all).

Figure 10 compares parsetimes for individual files between our approach and original, both as

fractions (left) and differences (right).

Note that the left subfigure is highly clustered around 1 and 2. This is due to the aforementioned

low resolution of the measurements reported by -dprofile.
In the context of parsing user-authored code for compilation this seems an acceptable amount of

overhead; after all, parsing is typically a rather insignificant portion of the total compilation time.

6.3 A Parser Generator for DSLs using Resolvable Ambiguity
We have implemented a parser generator for DSL development, also using the library presented in

Section 6.1, along with a table-driven LL(1) parser. The parser generator is self-hosted, in the sense

that its DSL for describing syntax is described in itself. Each production described also defines

0 1 2 3 4 5 6

Slowdown (factor)

0

100000

200000

N
o.
fil
es

Relative

unamb

ambif

0.0 0.1 0.2

Slowdown (s)

10
1

10
3

10
5

N
o.
fil
es

(lo
g)

Absolute

unamb

ambif

Time to parse a file (compared to ’original’)

Fig. 10. Histograms over time taken to parse a file with our approach compared with original, both in
relative terms (left) and absolute terms (right). The former is reported as a slowdown factor, e.g., “2” on the
horizontal axis means the parsetime was twice that of original. The latter is an absolute measure, e.g., “0.1”
on the horizontal axis means that parsing took 0.1 s longer than original. Note that the vertical axis is
log-scale in the right figure. The left graph extends to 6× because of two outliers, i.e., the bar is too short to
see.

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:23

an AST node; the types for the AST are auto-generated, along with various convenient helper

functions for AST manipulation.

The tool supports partial precedence and associativity, automatically translated to an appropriate

bind definition, using partial precedence tables. For example, the following example describes

expressions with explicit grouping, basic arithmetic, and comparators, with standard precedence

and associativity except for the comparators, which are left ambiguous relative to each other:

1 type Exp {
2 grouping = "(" ")",
3 }
4

5 prod Int: Exp = val:Integer
6 infix left Plus: Exp = "+"
7 infix left Times: Exp = "*"
8 infix Equal: Exp = "="
9 infix NotEqual: Exp = "!="
10

11 precedence {
12 Times;
13 Plus;
14 Equal NotEqual;
15 } except {
16 Equal ? NotEqual;
17 }

Operators appearing higher in the precedence table have higher precedence. Note also the except
block, which states that this precedence table does not affect grouping between Equal and NotEqual.
Using this language definition 1 + 2 * 3 = 7 parses the same as (1 + (2 * 3)) = 7, while 2 =
1 + 1 != 3 gives an ambiguity error:

1 FILE "example" 1:0 -1:14 ERROR: Ambiguity error
2 2 = (1 + 1 != 3)
3 (2 = 1 + 1) != 3

The translation from precedence and associativity to bind is straightforward, for each pair of

operators 𝑜1 and 𝑜2:

• If 𝑜1 has higher precedence than 𝑜2, define bind (𝑜1, 𝑜2) =← and bind (𝑜2, 𝑜1) =→.

• If 𝑜1 and 𝑜2 have the same precedence and associativity (e.g., both left-associative) define

bind (𝑜1, 𝑜2) = bind (𝑜2, 𝑜1) =←. Right-associativity merely flips the arrow.

• In all other cases, define bind (𝑜1, 𝑜2) = bind (𝑜2, 𝑜1) =↔.

The tool presently provides no high-level access to splittable productions, even though the under-

lying library supports it, since there are some open questions on how to do this in a user-friendly

way. Ideally, a language designer need not consider splittable productions at all, the tool should

handle this automatically, but this we leave for future work.

7 RELATEDWORK
Prior work. We previously introduced and defined the term resolvable ambiguity, along with

a language formalism supporting resolvable ambiguities [Palmkvist et al. 2021]. This language

formalism is somewhat more expressive than what we present in this paper; explicit grouping is

not the only mechanism of ambiguity resolution. For example, reintroducing optional tokens, such

as semi-colons, can potentially resolve an ambiguity. The difference in expressive power compared

to this paper is notable, however, in practice most interesting ambiguities tend to be resolvable

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

58:24 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

through explicit grouping, thus we find the tradeoff acceptable, since our previous approach did

not provide static guarantees, only property-based testing.

Formalisms of Precedence. Our bind function (c.f. Section 3) bears a strong resemblence to the

precedence relation of operator-precedence grammars (OPGs) [Floyd 1963]: both relate tokens

(operators in our case) with a non-symmetric relation that is used for parsing. We can create an

OPG precedence matrix from a bind definition by filling each cell as follows (where 𝑜1 and 𝑜2 denote

the relevant pair of operators):

• If 𝑜1 is right-open and 𝑜2 is left-open, examine bind (𝑜1, 𝑜2) and use the following equivalences:
− = ∅,→ = {⋖},← = {⋗}, and↔ = {⋖,⋗}.
• If 𝑜1 is right-closed and 𝑜2 is left-closed, use ∅.
• If 𝑜1 is right-open and 𝑜2 is left-closed, use {⋖}.
• If 𝑜1 is right-closed and 𝑜2 is left-open, use {⋗}.

Note that↔ does not produce a singleton set (since it represents an ambiguity), and that � is not

used (since we handle mixfix operators either before the grouper, or through splittable productions).

From this perspective our grouper implementation could be seen as a parser that handles a subset

of OPGs (no �) but extended to allow ambiguity (which is not technically allowed in an OPG).

However, shallow restrictions are not easily translated; OPG parsing only considers tokens in

its decision-making, not any interspersed and already reduced productions, i.e., the identity of a

potential direct child is not considered. OPGs and our groupers are thus strongly related, though

neither describes a superset of the other.

Aasa [1995] presents a formal definition of precedence, independent of any parsing algorithm.

However, the definition requires a total precedence relation, which precludes the possibility of

ambiguous precedence, which we advocate in this paper.

The operator ambiguity removal patterns of Afroozeh et al. [2013] present a different means of

expressing precedence through grammar rewrites. These rewrites frequently increase the size of

the grammars used significantly, however, their later work [Afroozeh and Izmaylova 2015] avoids

this issue through the use of data-dependent grammars. The rewrites and data-dependent rules are

relatively subtle to properly model precedence in nested expressions compared to the local rewrite

rules used in our approach, and their precedence relation requires at least transitivity, which is

more restrictive than ours.

Danielsson and Norell [2011] provide an approach for writing grammars containing mixfix

operators, and also allow ambiguous grammars, choosing only to reject ambiguous programs.

However, while their precedence relation is quite unrestricted, e.g., not requiring transitivity

or totality, their notion of a precedence correct expression on the other hand is. For example, in

a language where + and * have no defined relative precedence the expression 1 + 2 * 3 is

syntactically invalid, as opposed to valid but ambiguous.

Other approaches to ambiguity. Parsing expression grammars [Ford 2004] handle ambiguity in

grammars differently: the formalism does not allow it in the first place. However, this naturally

does not allow the beneficial effects of ambiguity we advocate in this paper.

Parser generators in common use tend to be based on unambiguous CFG subclasses, e.g., LL(k),

LR(k), or LR(*). Menhir in particular, which is the parser generator we integrate with in Section 6.2

uses LR(1) [Pottier and Régis-Gianas 2005]. Others do not fit neatly in the Chomsky hierarchy,

but still produce a single parse tree per parse, e.g., LL(*) [Parr and Fisher 2011] and ALL(*) [Parr

et al. 2014]. There are also general parsers in use that can handle ambiguous grammars, producing

multiple parse trees or other forms of parse forests, e.g., GLR [Lang 1974], GLL [Scott and Johnstone

2010], and Earley [1970].

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

Statically Resolvable Ambiguity 58:25

SugarJ [Erdweg et al. 2011] enables composition of syntactic language extensions, which can

naturally lead to ambiguities. These ambiguities are resolvable through essentially qualifying which

extension is used for a given ambiguous expression. This is a good approach when the ambiguity

concernswhat constructs are involved (e.g., an XML or HTML literal) rather than how the constructs

connect (implicit grouping), which is the focus of this paper.

Integrated development environments (IDEs) often need to parse partially correct programs,

which easily leads to ambiguity. For example, SMIE [Monnier 2020] also uses an OPG-like parser in

combination with a more traditional parser, including the trick of splitting if-then-else.8

The detection of ambiguity in contexct-free grammars, though undecidable in general [Cantor

1962], has nonetheless been explored in great detail. Examples include linguistic characterizations

and regular language approximations [Brabrand et al. 2007], using SAT-solvers [Axelsson et al.

2008], and other conservative approaches [Schmitz 2007]. An overview and additional approaches

can be found in the PhD thesis of Basten [2011].

In summary, our approach differs from the state of the art in that it combines the following

properties in one approach:

• A solution to the ambiguity problem that does not outright forbid ambiguity.

• All ambiguities are statically known to be resolvable.

• The approach is flexible and expressive enough to describe a large, complicated, pre-existing

language (OCaml’s expression language).

• The overhead of using our approach is minor.

8 CONCLUSION
In this paper we give—for the first time—a solution to the problem of statically resolvable ambiguity.

More specifically, our solution is based on the idea of having a grouper that works in tandem with a

standard parser, where the grouper consumes operator sequences and produces grouped trees. We

show that our solution can both be implemented efficiently and proven correct within Coq, given

some mild assumptions. Moreover, the approach is expressive enough to handle an essential part

of the standard OCaml parser, demonstrating practical feasibility. As for future work, we envision

the approach being designed and implemented in a complete compiler toolchain, where a language

designer develops a language in a high-level syntax specification, thus hiding internal details of

splittable productions from the user.

ACKNOWLEDGMENTS
We thank the reviewers for their excellent comments. This project is financially supported by the

Swedish Foundation for Strategic Research (FFL15-0032).

REFERENCES
Annika Aasa. 1995. Precedences in Specifications and Implementations of Programming Languages. Theoretical Computer

Science 142, 1 (May 1995), 3–26. https://doi.org/10.1016/0304-3975(95)90680-J

Ali Afroozeh and Anastasia Izmaylova. 2015. One Parser to Rule Them All. In 2015 ACM International Symposium on New
Ideas, New Paradigms, and Reflections on Programming and Software (Onward!) (Onward! 2015). Association for Computing

Machinery, New York, NY, USA, 151–170. https://doi.org/10.1145/2814228.2814242

Ali Afroozeh, Mark van den Brand, Adrian Johnstone, Elizabeth Scott, and Jurgen Vinju. 2013. Safe Specification of Operator

Precedence Rules. In Software Language Engineering (Lecture Notes in Computer Science), Martin Erwig, Richard F. Paige,

and Eric Van Wyk (Eds.). Springer International Publishing, 137–156. https://doi.org/10.1007/978-3-319-02654-1_8

Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. 2006. Compilers: Principles, Techniques, and Tools (second
ed.). Addison Wesley, Boston.

8
https://www.gnu.org/software/emacs/manual/html_node/elisp/SMIE-Tricks.html

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

https://doi.org/10.1016/0304-3975(95)90680-J
https://doi.org/10.1145/2814228.2814242
https://doi.org/10.1007/978-3-319-02654-1_8
https://www.gnu.org/software/emacs/manual/html_node/elisp/SMIE-Tricks.html

58:26 Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman

Roland Axelsson, Keijo Heljanko, and Martin Lange. 2008. Analyzing Context-Free Grammars Using an Incremental

SAT Solver. In Automata, Languages and Programming (Lecture Notes in Computer Science), Luca Aceto, Ivan Damgård,

Leslie Ann Goldberg, MagnúsM. Halldórsson, Anna Ingólfsdóttir, and IgorWalukiewicz (Eds.). Springer Berlin Heidelberg,

410–422. https://doi.org/10.1007/978-3-540-70583-3_34

Bas Basten. 2011. Ambiguity Detection for Programming Language Grammars. Ph. D. Dissertation. Universiteit van

Amsterdam.

Claus Brabrand, Robert Giegerich, and Anders Møller. 2007. Analyzing Ambiguity of Context-Free Grammars. In Implemen-
tation and Application of Automata (Lecture Notes in Computer Science), Jan Holub and Jan Žďárek (Eds.). Springer Berlin

Heidelberg, 214–225. https://doi.org/10.1007/978-3-540-76336-9_21

David Broman. 2019. A Vision of Miking: Interactive Programmatic Modeling, Sound Language Composition, and Self-

Learning Compilation. In Proceedings of the 12th ACM SIGPLAN International Conference on Software Language Engineering
(SLE 2019). Association for Computing Machinery, New York, NY, USA, 55–60. https://doi.org/10.1145/3357766.3359531

David G. Cantor. 1962. On The Ambiguity Problem of Backus Systems. J. ACM 9, 4 (Oct. 1962), 477–479. https:

//doi.org/10.1145/321138.321145

Arthur Charguéraud. 2022. The TLC Coq Library.

Keith Cooper and Linda Torczon. 2011. Engineering a Compiler (second ed.). Elsevier.

Nils Anders Danielsson and Ulf Norell. 2011. Parsing Mixfix Operators. In Implementation and Application of Functional
Languages (Lecture Notes in Computer Science), Sven-Bodo Scholz and Olaf Chitil (Eds.). Springer Berlin Heidelberg,

80–99. https://doi.org/10.1007/978-3-642-24452-0_5

Luís Eduardo de Souza Amorim and Eelco Visser. 2020. Multi-Purpose Syntax Definition with SDF3. In Software Engineering
and Formal Methods (Lecture Notes in Computer Science), Frank de Boer and Antonio Cerone (Eds.). Springer International
Publishing, Cham, 1–23. https://doi.org/10.1007/978-3-030-58768-0_1

Jay Earley. 1970. An Efficient Context-free Parsing Algorithm. Commun. ACM 13, 2 (Feb. 1970), 94–102. https://doi.org/10.

1145/362007.362035

Sebastian Erdweg, Tillmann Rendel, Christian Kästner, and Klaus Ostermann. 2011. SugarJ: Library-Based Syntactic

Language Extensibility. In Proceedings of the 2011 ACM International Conference on Object Oriented Programming Systems
Languages and Applications (OOPSLA ’11). Association for Computing Machinery, New York, NY, USA, 391–406. https:

//doi.org/10.1145/2048066.2048099

Robert W. Floyd. 1963. Syntactic Analysis and Operator Precedence. J. ACM 10, 3 (July 1963), 316–333. https://doi.org/10.

1145/321172.321179

Bryan Ford. 2004. Parsing Expression Grammars: A Recognition-based Syntactic Foundation. In Proceedings of the 31st ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages (POPL ’04). ACM, New York, NY, USA, 111–122.

https://doi.org/10.1145/964001.964011

Seymour Ginsburg and Joseph Ullian. 1966. Ambiguity in Context Free Languages. J. ACM 13, 1 (Jan. 1966), 62–89.

https://doi.org/10.1145/321312.321318

Bernard Lang. 1974. Deterministic Techniques for Efficient Non-Deterministic Parsers. In Automata, Languages and
Programming (Lecture Notes in Computer Science), Jacques Loeckx (Ed.). Springer, Berlin, Heidelberg, 255–269. https:

//doi.org/10.1007/978-3-662-21545-6_18

Stefan Monnier. 2020. SMIE: Weakness Is Power! The Art, Science, and Engineering of Programming 5, 1 (June 2020), 1:1–1:26.

https://doi.org/10.22152/programming-journal.org/2021/5/1

Viktor Palmkvist and David Broman. 2019. Creating Domain-Specific Languages by Composing Syntactical Constructs. In

Practical Aspects of Declarative Languages (Lecture Notes in Computer Science), José Júlio Alferes and Moa Johansson

(Eds.). Springer International Publishing, 187–203. https://doi.org/10.1007/978-3-030-05998-9_12

Viktor Palmkvist, Elias Castegren, Philipp Haller, and David Broman. 2021. Resolvable Ambiguity: Principled Resolution

of Syntactically Ambiguous Programs. In Proceedings of the 30th ACM SIGPLAN International Conference on Compiler
Construction (CC 2021). Association for Computing Machinery, New York, NY, USA, 153–164. https://doi.org/10.1145/

3446804.3446846

Terence Parr and Kathleen Fisher. 2011. LL(*): The Foundation of the ANTLR Parser Generator. In Proceedings of the 32Nd
ACM SIGPLAN Conference on Programming Language Design and Implementation (PLDI ’11). ACM, New York, NY, USA,

425–436. https://doi.org/10.1145/1993498.1993548

Terence Parr, SamHarwell, and Kathleen Fisher. 2014. Adaptive LL(*) Parsing: The Power of Dynamic Analysis. In Proceedings
of the 2014 ACM International Conference on Object Oriented Programming Systems Languages & Applications (OOPSLA
’14). ACM, New York, NY, USA, 579–598. https://doi.org/10.1145/2660193.2660202

François Pottier and Yann Régis-Gianas. 2005. The Menhir Parser Generator.

Sylvain Schmitz. 2007. Conservative Ambiguity Detection in Context-Free Grammars. In Automata, Languages and
Programming (Lecture Notes in Computer Science), Lars Arge, Christian Cachin, Tomasz Jurdziński, and Andrzej Tarlecki

(Eds.). Springer Berlin Heidelberg, 692–703. https://doi.org/10.1007/978-3-540-73420-8_60

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

https://doi.org/10.1007/978-3-540-70583-3_34
https://doi.org/10.1007/978-3-540-76336-9_21
https://doi.org/10.1145/3357766.3359531
https://doi.org/10.1145/321138.321145
https://doi.org/10.1145/321138.321145
https://doi.org/10.1007/978-3-642-24452-0_5
https://doi.org/10.1007/978-3-030-58768-0_1
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/362007.362035
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/2048066.2048099
https://doi.org/10.1145/321172.321179
https://doi.org/10.1145/321172.321179
https://doi.org/10.1145/964001.964011
https://doi.org/10.1145/321312.321318
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.1007/978-3-662-21545-6_18
https://doi.org/10.22152/programming-journal.org/2021/5/1
https://doi.org/10.1007/978-3-030-05998-9_12
https://doi.org/10.1145/3446804.3446846
https://doi.org/10.1145/3446804.3446846
https://doi.org/10.1145/1993498.1993548
https://doi.org/10.1145/2660193.2660202
https://doi.org/10.1007/978-3-540-73420-8_60

Statically Resolvable Ambiguity 58:27

Elizabeth Scott and Adrian Johnstone. 2010. GLL Parsing. Electronic Notes in Theoretical Computer Science 253, 7 (Sept. 2010),
177–189. https://doi.org/10.1016/j.entcs.2010.08.041

Thomas A. Sudkamp. 1997. Languages and Machines: An Introduction to the Theory of Computer Science. Addison-Wesley

Longman Publishing Co., Inc., Boston, MA, USA.

The dafny-lang community. 2022. Dafny Documentation. https://dafny-lang.github.io/dafny/DafnyRef/DafnyRef.html.

Adam Brooks Webber. 2003. Modern Programming Languages: A Practical Introduction. Franklin, Beedle & Associates.

Received 2022-07-07; accepted 2022-11-07

Proc. ACM Program. Lang., Vol. 7, No. POPL, Article 58. Publication date: January 2023.

https://doi.org/10.1016/j.entcs.2010.08.041

	Abstract
	1 Introduction
	2 Motivating Resolvable Ambiguity and Overview
	2.1 Motivating Resolvable Ambiguity
	2.2 The Importance of Static Guarantees for Resolvability
	2.3 Overview of Our Approach

	3 A Formal Semantics For Explicit and Implicit Grouping
	4 Static Resolvability and its Mechanized Proof
	4.1 Proof Outline
	4.2 Mechanization

	5 Adapting OCaml Expressions to Use a Grouper
	5.1 Challenges

	6 Implementation and Evaluation
	6.1 Grouping as a Library
	6.2 Re-implementing Expressions in OCaml
	6.3 A Parser Generator for DSLs using Resolvable Ambiguity

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

